Modeling Solid Oxide Fuel Cells Using Continuous-Time Recurrent Fuzzy Systems

A. Flemming, J. Adamy
Darmstadt University of Technology, Institute for Automatic Control, Landgraf-Georg-Str. 4, 64283 Darmstadt, Germany

Abstract
Continuous-time recurrent fuzzy systems allow modeling continuous-time processes whose dynamic behavior can be stated in linguistic if-then rules. If the dynamics are known in certain mesh points, the interpolating character of the fuzzy system between the mesh points yields a complete dynamical model of the process. In this contribution, continuous-time recurrent fuzzy systems are employed to model the electrical behavior of a solid oxide fuel cell, which both can be described qualitatively and is known quantitatively from measurements. Due to the transparency of the model an easy estimation of its parameters is possible. Additionally, the model parameters are optimized numerically to enhance the model performance.

Key words: Solid oxide fuel cell, continuous-time recurrent fuzzy system, nonlinear time-variant model, qualitative modeling

1. Introduction

Fuel cells offer an energy source that is independent of fossil fuels and has low emissions, so that they are a promising energy conversion device. Different types of fuel cells have been developed. Fig. 1 gives an overview of common fuel cell types, which, e.g., employ different electrolyte materials, differ in their operating temperature, and use different charge carriers (Larminie and Dicks, 2003; O’Hayre et al., 2006). In the following, we only consider solid oxide fuel cells (SOFC).

The analysis and enhancement of SOFC and systems incorporating them, models were developed describing the different dynamical effects that appear, e.g., chemical effects, thermodynamical effects, and electrical effects. Models of SOFC that can be found in literature are, e.g., dynamical models based on electrochemical and thermodynamical effects (Sedghisigarchi and Feliachi, 2004; Gemmen and Johnson, 2005; Ota et al., 2003; Achenbach, 1995; Hall and Colclaser, 1999; Lu et al., 2006; Qi et al., 2005, 2006; Xu et al., 2006; Padullé et al., 2000). Some are complex state space models (Lu et al., 2006; Qi et al., 2005, 2006). Other dynamical models consider the incorporation into a large power system (Xu et al., 2006; Padullé et al., 2000; Ivers-Tiffée et al., 2004). By using numerical methods, dynamical models were developed in Ivers-Tiffée et al. (2004); Jurado (2004b); Jurado et al. (2004); Jurado (2004a); Haschka et al. (2006).

Unfortunately, the micro scale models require detailed knowledge of the electrochemical and thermodynamical effects that appear in SOFC. Macro scale models, which can be used within a large power system model, allow a higher level of abstraction (Ivers-Tiffée et al., 2004). In this case, it is of interest to model the dynamic input-output characteristics of the fuel cell. Thus, they do not require the incorporation of all known physical properties. However, models solely using numerical methods, i.e. black box models, are not transparent and do not allow to incorporate expert knowledge in the form of linguistic rules. In Ivers-Tiffée et al. (2004) a dynamical macro scale model, combining qualitative expert knowledge with physical properties and measured data, that allows simulating the start-up of a SOFC was developed.

<table>
<thead>
<tr>
<th>type</th>
<th>electrolyte</th>
<th>operating temp.</th>
<th>charge carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFC</td>
<td>ceramic</td>
<td>600 – 1000°C</td>
<td>O²⁻</td>
</tr>
<tr>
<td>PEMFC</td>
<td>polymer membrane</td>
<td>80°C</td>
<td>H⁺</td>
</tr>
<tr>
<td>PAFC</td>
<td>liquid H₃PO₄</td>
<td>200°C</td>
<td>H⁺</td>
</tr>
<tr>
<td>AFC</td>
<td>liquid KOH</td>
<td>60 – 220°C</td>
<td>OH⁻</td>
</tr>
<tr>
<td>MCFC</td>
<td>molten carbonate</td>
<td>650°C</td>
<td>CO₂⁻</td>
</tr>
</tbody>
</table>

Fig. 1. Major fuel cell types.
The aim of this work is the proposition of a macro scale SOFC model describing the dynamic interrelationship between the current density and the voltage loss during the operation of a SOFC. The model exploits the fact that the different dynamic and static voltage losses, which occur in the fuel cell, can be qualitatively described using if-then rules. By employing continuous-time recurrent fuzzy systems, a mathematical dynamic model is derived from the qualitative linguistic model. In contrast to Sedghisigarchi and Feliachi (2004); Gemmen and Johnson (2005); Ota et al. (2003); Achenbach (1995); Hall and Colclaser (1999); Lu et al. (2006); Qi et al. (2005, 2006); Xu et al. (2006); Padullé et al. (2000); Jurado (2004b); Jurado et al. (2004); Jurado (2004a); Haschka et al. (2006), the proposed model is transparent, i.e., interpretable. Due to its transparency, good model parameters are estimated heuristically from measured data without numerical identification methods.

Furthermore, it is possible to observe that the characteristics of the electrical behavior of the SOFC changes during its operation time. Thus, the degradation process is included into the model, which leads to a time-variant model.

The article is organized as follows: in Section 2, the operation mode of SOFC is elucidated. An introduction to continuous-time recurrent fuzzy systems is given in Section 3. The qualitative and quantitative model of the electrical behavior of SOFC using continuous-time recurrent fuzzy systems is proposed in Section 4 and Section 5, respectively. Subsequently, Section 6 presents the simulation results employing this model. The degradation process of the fuel cell is incorporated into the model in Section 7. Section 8 presents the simulation results of this time-variant model. Finally, a conclusion is given in Section 9.

2. Operation mode of solid oxide fuel cells

In general, fuel cells exploit the chemical reaction of hydrogen and oxygen, which is known as detonating gas reaction. In the case of a fuel cell, both reactants, i.e., the oxygen at the cathode and the hydrogen at the anode, are separated by an electrolyte, which is only ionic permeable. In the case of a SOFC the electrolyte consists of a solid ceramic material. Due to the spatial separation of oxygen and hydrogen, the electron transfer that occurs during the reaction of the two reactants, can be harnessed as an electrical current (Larminie and Dicks, 2003; O’Hayre et al., 2006).

The reactions take place where the highly porous electrodes allow intimate contact between the three phases gas, electrically conductive electrode, and ion-conductive electrolyte. These reaction sites are denoted as triple phase boundaries (O’Hayre et al., 2006).

The theoretical possible cell voltage of 1.229V at the output of the fuel cell (O’Hayre et al., 2006), which is determined for the thermodynamical equilibrium, i.e., without a current flow, cannot be achieved in practice due to several loss effects. These effects lead to a voltage loss U_V, which increases with increasing current density J, i.e., with decreasing consumer load. The voltage loss, U_V, depending on the current density, J, is a characteristic parameter of the SOFC (Larminie and Dicks, 2003; O’Hayre et al., 2006). Fig. 3 shows measurements of the current density J.

The overall voltage loss, U_V, arises from static and dynamic voltage losses, which are elucidated in the next subsection.

2.1. Static and dynamic voltage losses

The static voltage loss, U_s, that arises in the operation mode with constant current density, J, can be ascribed to three different effects. First, there exists an ohmic voltage
The deterioration of the SOFC during operation is caused by many different influencing factors, e.g., electrochemical effects and material effects caused by the operation of the fuel cell, which lead to a modified static and dynamical behavior of the fuel cell.

An increase of the current density, \(J \), i.e., a positive \(\dot{J} \), and therefore a positive dynamic voltage loss, \(U_d \), has a higher influence on the degradation of a SOFC than a constant current density. This can be explained by considering the structural effect. An increase in current density leads to a local high current density at the triple phase boundary, since it cannot adopt instantaneously. The triple phase boundary increases with a slow time-constant until the local current density reduces to the previous value. The local high current density during the settling-time causes a large degradation of the material during this period (Haschka et al., 2006).

During the operation with constant current densities the degradation of the material is lower. The deterioration of the fuel cell mostly leads to an increase in the ohmic voltage drop, but also leads to larger dynamical voltages losses.

3. Continuous-time recurrent fuzzy systems

The described electrical behavior of a SOFC is modeled using continuous-time recurrent fuzzy systems. A detailed description of these systems is given in Adamy and Flemming (2006). To simplify matters, a short introduction to continuous-time recurrent fuzzy systems is given in the following.

3.1. Formal system description

The structure of a continuous-time recurrent fuzzy system \(^2\) is shown in Fig. 5. It comprises the complete fuzzy systems \(f \) and \(g \), i.e., they include fuzzification, inference, and defuzzification. Its inputs are the crisp state vector \(x(t) \) and the crisp input vector \(u(t) \) at a particular time \(t \). For these inputs the crisp derivative of the state vector, \(\dot{x}(t) \), is computed at the output of the fuzzy function \(f \) and fed

\(^2\) Continuous-time recurrent fuzzy systems are related to discrete-time recurrent fuzzy systems (Gorrini and Bersini, 1994; Adamy, 1995; Adamy and Kempf, 2003, 2004).
back to the input of the fuzzy function f through an integrator element. The rules, which linguistically describe the dynamics of the process have the following formal form:

If $x_1(t) = L_{x_1}^j$ and ... and $x_n(t) = L_{x_n}^q,$ and $u_1(t) = L_{u_1}^j$ and ... and $u_m(t) = L_{u_m}^q,$ then $\dot{x}_1(t) = L_{x_1}^j(w_j(q))$ and ... and $\dot{x}_n(t) = L_{x_n}^j(w_n(q)),$

where $L_{x_1}^j, L_{x_1}^q$ and $L_{x_n}^j, L_{x_n}^q$ are the linguistic values of the linguistic states $x_i,$ linguistic inputs $u_p,$ and the linguistic derivatives $\dot{x}_i,$ respectively. Systems with such a linguistic description have already been used in Badard and Pontet (1997); di Sciascio and Carelli (1996) without denoting them continuous-time recurrent fuzzy systems.

Each rule defines a mapping of both the index vector $j = (j_1, \ldots, j_n)^T$ and the index vector $q = (q_1, \ldots, q_m)^T$ onto the component w_i of an index vector $w = (w_1, \ldots, w_m)^T$ indicated by the index $w_i(j, q).$ The linguistic derivative $L_{x_i}^j(w_i(j, q))$ indicates the change in the linguistic state $x_i,$ i.e., it linguistically indicates whether \dot{x}_i is, e.g., “positive,” “negative” or “zero.”

The linguistic values and linguistic derivatives can be combined into linguistic vectors $L_{x_i}^j, L_{x_i}^q,$ and a linguistic gradient $L_{x_i}^j(w_i(j, q))$ representing the “and” correlation of their respective components, i.e., the expression $x = L_{x_i}^j = (L_{x_1}^j, \ldots, L_{x_n}^j)^T$ is the short form of “$x_1 = L_{x_1}^j$ and ... and $x_n = L_{x_n}^j.” This leads for each rule to the following short form:

If $x(t) = L_{x_i}^j$ and $u(t) = L_{u_i}^q,$ then $\dot{x}(t) = L_{x_i}^j(w_i(j, q)).$ (2)

This linguistic representation of a continuous-time recurrent fuzzy system may be formalized mathematically by employing the fuzzy function f and the fuzzy function $g,$ where

$$\dot{x}(t) = f(x(t), u(t)), \quad (3)$$
$$y(t) = g(x(t), u(t)). \quad (4)$$

The fuzzy functions f and g covering fuzzification, inference, and defuzzification allow mathematical processing and investigation of the linguistic rules.

To obtain the fuzzy function $f,$ membership functions $\mu_{x_i}^{L_{x_i}^j}(x_i),$ are assigned to every linguistic value $L_{x_i}^j,$ of each state, $x_i,$ on an interval $X_i \subseteq \mathbb{R}.$ Each membership function takes on its maximum value at a so-called core position, $s_{x_i}^{L_{x_i}^j}.$ The membership functions $\mu_{u_p}^{L_{u_p}^q}(u_p)$ and core positions $s_{u_p}^{L_{u_p}^q}$ are defined similarly. Singletons, $s_{x_i}^{L_{x_i}^j}$, are employed as membership functions for the linguistic values, $L_{x_i}^{L_{x_i}^j}(j, q),$ of the linguistic derivatives, $\dot{x}_i.$ These are the so-called core position derivatives.

Combining the core positions, $s_{x_i}^{L_{x_i}^j}$ and $s_{u_p}^{L_{u_p}^q},$ into vectors yields the core position vectors, $s_{x_i}^{L_{x_i}^j}$ and $s_{u_p}^{L_{u_p}^q}$ respectively. The combination of the core position derivatives into a vector leads to the core position gradient, $s_{x_i}^{L_{x_i}^j}(j, q).$

The membership functions $\mu_{x_i}^{L_{x_i}^j}(x_i)$ have to satisfy the following conditions

(i) Delimitation: $\mu_{x_i}^{L_{x_i}^j}(x_i) \in [0, 1]$ for all $x_i \in X_i,$

$$\mu_{x_i}^{L_{x_i}^j}(x_i) \text{ monotonically increases,} \quad \text{for all } x_i < s_{x_i}^{L_{x_i}^j},$$

(ii) Convexity: $\mu_{x_i}^{L_{x_i}^j}(x_i) \text{ monotonically decreases,} \quad \text{for all } x_i > s_{x_i}^{L_{x_i}^j},$

(iii) Partition: $\sum_{j, q} \mu_{x_i}^{L_{x_i}^j}(x_i) = 1 \text{ for all } x_i \in X_i,$ and $\mu_{x_i}^{L_{x_i}^j}(s_{x_i}^{L_{x_i}^j}) = 1$ and $\mu_{x_i}^{L_{x_i}^j}(s_{x_i}^{L_{x_i}^j}) = 0$ for $j_i \neq l_i,$

(iv) Continuity: $\mu_{x_i}^{L_{x_i}^j}(x_i)$ is continuous in $X_i.$

These conditions should also hold for each membership function $\mu_{u_p}^{L_{u_p}^q}(u_p)$ and their core positions, $s_{u_p}^{L_{u_p}^q}.$ In practice, triangular functions and ramp functions are employed as membership functions. Thus, the membership functions $s_{x_i}^{L_{x_i}^j}(x_i)$ and $s_{u_p}^{L_{u_p}^q}(u_p)$ are completely defined by the core positions $s_{x_i}^{L_{x_i}^j}$ and $s_{u_p}^{L_{u_p}^q},$ respectively. Fig. 6 (a) shows an example for the membership functions that are used to fuzzify the premise and that define the fuzzy sets in the consequent of a linguistic rule.

The core position vectors, $s_{x_i}^X \in X = \mathbb{R}^n$ and $s_{u_p}^U \in U = \mathbb{R}^m,$ and the combinations thereof, form a lattice in the state space, $X,$ the input space, $U,$ and the space $X \times U,$ respectively. Fig. 6 (b) shows an example. Due to condition 3), there is only one active rule in any core position vector, $(x, u) = (s_{x_1}^X, s_{u_1}^U),$ such that only one core position gradient, $s_{x_i}^{L_{x_i}^j}(j, q),$ is associated to each combination $(s_{x_1}^X, s_{u_1}^U).$ The core position gradient, $s_{x_i}^{L_{x_i}^j}(j, q),$ defines the change in the state value with respect to time in the corresponding lattice point, $(s_{x_1}^X, s_{u_1}^U),$ i.e., in which direction and how fast a trajectory passes through this lattice point.

Algebraic multiplication is employed as both the aggregation operator and the implication operator, and summation is employed as the accumulation operator. Defuzzification is based on the center of singletons defuzzification (CoS). The choice of these operators leads to a continuous fuzzy function, $f(x, u).$

Under consideration of the conditions above and according to (Adamy and Kempf, 2003; Kempf and Adamy, 2003; Adamy and Flemming, 2006), we obtain the fuzzy function $f(x, u)$ with the following analytical form:

$$\dot{x}(t) = f(x(t), u(t)) = \sum_{j, q} s_{x_i}^{L_{x_i}^j}(x_i) \prod_{i=1}^n \mu_{x_i}^{L_{x_i}^j}(x_i) \prod_{p=1}^m \mu_{u_p}^{L_{u_p}^q}(u_p). \quad (5)$$

The fuzzy function g is defined similarly.
Fig. 6. (a) Examples for the membership functions $\mu_{i,j}^{x_1}(x_i)$ that are used to fuzzify the premise and for the singleton $s_{w(j)}^{x}$ that are used as fuzzy sets in the consequent of a linguistic rule. (b) Example for a lattice in the state space X and recurrent fuzzy system comprising two states and no input.

Note, recurrent fuzzy systems are different from Takagi-Sugeno type fuzzy systems (Adamy and Flemming, 2006). The dynamics of Takagi-Sugeno type fuzzy systems result from the dynamics of local dynamic models, which are fully specified by differential equations and interpolated by using a fuzzy system. An example rule is:

If $x = 1$, then $\dot{x} = Ax + bu$.

In contrast, recurrent fuzzy systems do not interpolate between local dynamic models, but they are based on linguistic rules, which define the dynamics of the system and which use fuzzy sets in the consequent part of each rule, i.e.

If x is “small”, then \dot{x} is “positive large”.

This leads to dynamics which are inherent to the recurrent fuzzy system. Due to the linguistic definition of the dynamics they are transparent, i.e. interpretable. In general, Takagi-Sugeno type systems do not offer this advantage.

3.2. Qualitative and quantitative model

The modeling procedure using continuous-time recurrent fuzzy systems is organized in two steps: Qualitative modeling and quantitative modeling (Adamy and Flemming, 2006).

Step (1): The first step requires at least fuzzy knowledge of the dynamic process in nodes, i.e., by using if-then rules one must be able to describe the state vector, x, and the input vector, u, linguistically by the linguistic vectors, L_j^x and L_k^u, and the variation, \dot{x}, of the state vector by the linguistic gradient, $L_{w(j)}^x$, in the nodes (L_j^x, L_k^u). The linguistic description of the system dynamics leads to a qualitative model employing if-then rules of the form of (1) or (2).

Step (2): In the second step, measured or representative values have to be assigned to the linguistic model from Step (1). This leads to a quantitative model, which is gained from the qualitative model. The linguistic vectors, L_j^x and L_k^u, are represented by numerical values as defined as the core position vectors, s_{j}^x and s_{k}^u, in the state space. Similarly, a core position gradient, $s_{w(j)}^x$, associated with each node (s_{j}^x, s_{k}^u), numerically represents the linguistic gradient, $L_{w(j)}^x$, in the according node. The derivative, \dot{x}, of the states, x, between the nodes (s_{j}^x, s_{k}^u) is interpolated using the complete fuzzy system f, which is given by (3).

The two steps of the modeling procedure are shown in Fig. 7.

4. Qualitative Modeling of SOFC

In the following, modeling the electrical behavior of a SOFC, i.e., the dynamical interrelationship between current density J and voltage loss U_V, is accomplished by applying the modeling procedure described in the previous section. The static voltage loss, U_s, and the dynamic voltage loss, U_d, are separately modeled employing the dynamic part (3) and the static part (4) of a continuous-time recurrent fuzzy system, respectively. We start off with the linguistic model.

4.1. Dynamic Model Part

The dynamic voltage loss is modeled employing the dynamic model part, $x = f(x, u)$, of a recurrent fuzzy system (3), (4). According to Haschka et al. (2006), we assume that the two dynamic effects, i.e., the temperature effect and structural effect, are independent of each other. Thus, the two different effects that lead to a dynamic voltage loss are modeled separately. Therefore, we introduce the variable U_{d1} for the dynamic voltage loss that results from the temperature effect and the variable U_{d2} for the dynamic voltage loss arising from the structural effect. The two effects have different time-constants according Section 2.1. The sum of U_{d1} and U_{d2} yields the overall dynamic voltage loss U_d.

The measured data in Fig. 3 and 4 show that the dynamic voltage loss depends on the current density, J, and the change in current density, \dot{J}. It is apparent that the higher the current density J is the larger are the dynamic voltage losses U_{d1} and U_{d2} and the faster is their decay rate. Fig. 8 shows a zoomed plot of the measured data where the
The above described dynamic model part can be represented by

\[
[\hat{U}_{d1}, \hat{U}_{d2}]^T = \mathbf{f}(U_{d1}, U_{d2}, J, \hat{J}),
\]

where the function \(\mathbf{f} \) is defined according to Section 3.1.

Note, the dynamic part of the qualitative model allows to model \(U_{d1} \) and \(U_{d2} \) for each current level \(i \in \{0, \ldots, 9\} \) separately. This yields \(3 \times 3 \times 2 \) rules for each current level, such that the model remains transparent, although the overall number of rules is high, i.e., modeling all current levels \(i \in \{0, \ldots, 9\} \) leads to \(10 \times 3 \times 3 \times 2 = 180 \) rules for the dynamic model part. Since the fuzzy system interpolates values between the modeled current levels, it is also possible to reduce the number of rules by modeling the dynamic effects for fewer current levels, which leads to a less complex, but less accurate model. Note, the dynamic voltage losses depend nonlinearly on the current density. This can easily be included into the model since each current level is modeled separately.

4.2. Static Model Part

The overall voltage loss, \(U_V \), depending on the current density, \(J \), and the dynamic voltage losses, \(U_{d1} \) and \(U_{d2} \), is described by rules of the form

\[
\begin{array}{c|ccc}
J = L_i^d, & i \in \{0, \ldots, 9\} \\
\end{array}
\]

model part. Since the fuzzy system interpolates values between the modeled current levels, it is also possible to reduce the number of rules by modeling the dynamic effects for fewer current levels, which leads to a less complex, but less accurate model. Note, the dynamic voltage losses depend nonlinearly on the current density. This can easily be included into the model since each current level is modeled separately.

The overall voltage loss, \(U_V \), depending on the current density, \(J \), and the dynamic voltage losses, \(U_{d1} \) and \(U_{d2} \), is described by rules of the form

\[
\begin{array}{c|ccc}
J = L_i^d & U_{d1} & U_{d2} \\
\end{array}
\]

for a high current density, \(J \), and a positive step in the current density can be observed.

This leads for, e.g., \(U_{d1} \) to rules of the form

\[
\text{If } J = L_i^d \text{ and } \hat{J} = L_k^d \text{ and } U_{d1} = L_{i1}^{U_{d1}} \text{, then } \hat{U}_{d1} = L_{k1}^{U_{d1}}
\]

The rules for \(U_{d2} \) are similar. The current density, \(J \), takes on one linguistic value \(L_i^d \) for each current level \(i \in \{0, \ldots, 9\} \) of the measured data, which are summarized in Table 1.

Furthermore, the variation of the current density, \(\hat{J} \), takes on the linguistic values \(L_k^d \in \{"negative", "zero", "positive"\} \) indicated by the index \(k \in \{1, 2, 3\} \), respectively, and the voltage loss \(U_{d1} \) takes on the linguistic values \(L_j^{U_{d1}} \in \{"negative", "zero", "positive"\} \) indicated by the index \(j \in \{1, 2, 3\} \), respectively. The linguistic rules for \(U_{d1} \) are summarized in Table 2, where the linguistic values \(L_j^{U_{d1}} \) are given. Note, the rule base in Table 2 is used for each current level \(i \in \{0, \ldots, 9\} \). Replacing \(U_{d1} \) and \(\hat{U}_{d1} \) by \(U_{d2} \) and \(\hat{U}_{d2} \) respectively, in Table 2, leads to the rule base for the dynamic voltage loss \(U_{d2} \), which arises from the structural effect.

The above described dynamic model part can be represented by

\[
[\hat{U}_{d1}, \hat{U}_{d2}]^T = \mathbf{f}(U_{d1}, U_{d2}, J, \hat{J}),
\]

where the function \(\mathbf{f} \) is defined according to Section 3.1.

The overall voltage loss, \(U_V \), depending on the current density, \(J \), and the dynamic voltage losses, \(U_{d1} \) and \(U_{d2} \), is described by rules of the form

\[
\begin{array}{c|ccc}
J = L_i^d, & i \in \{0, \ldots, 9\} & U_{d1} & U_{d2} \\
\end{array}
\]

The static voltage loss, \(U_s \), depends nonlinearly on the current density. This can easily be included into the model since each current level is modeled separately.

Table 1

<table>
<thead>
<tr>
<th>Linguistic values (L_i^d)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_i^d)</td>
<td>z</td>
<td>vt</td>
<td>t</td>
<td>vs</td>
<td>s</td>
<td>m</td>
<td>ml</td>
<td>l</td>
<td>vl</td>
<td>h</td>
</tr>
</tbody>
</table>

Table 2

| Rule base that describes the variation \(\hat{U}_{d1} \) of the voltage loss \(U_{d1} \) for a certain current level \(L_i^d \) using the linguistic values \(L_j^{U_{d1}} \in \{nvl, nl, n, ln, z, lp, p, pl\} \), where nvl="negative very large", nl="negative large", n="negative", ln="less negative", z="zero", lp="less positive", p="positive", pl="positive large", pel="positive very large." |
|-----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| \(\hat{U}_{d1} \) | \(U_{d1} \) | n | z | p | j | z | p | z | n | p |
| \(J = L_i^d, i \in \{0, \ldots, 9\} \) |

Table 3

| Rule base that determines the overall voltage loss, \(U_V \), by combining the static voltage loss, \(U_s \), with the dynamic voltage losses, \(U_{d1} \) and \(U_{d2} \) |
|-----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| \(U_V \) | \(U_{d1} \) | n | z | p | j | z | p | z | n | p |
| \(J = L_i^d, i \in \{0, \ldots, 9\} \) |

\[
U_V = g(U_{d1}, U_{d2}, J),
\]

where the function \(g \) is defined according to Section 3.1.
Fig. 9. Structure of the SOFC model using continuous-time recurrent fuzzy systems.

Table 4
Core positions s_i^J for the ith current level with $i \in \{0, \ldots, 9\}$.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i^J</td>
<td>0.0012</td>
<td>0.1519</td>
<td>0.2024</td>
<td>0.2530</td>
<td>0.3037</td>
<td>0.3543</td>
<td>0.4049</td>
<td>0.4555</td>
<td>0.5061</td>
<td></td>
</tr>
</tbody>
</table>

This leads for each current level $i \in \{0, \ldots, 9\}$ to $2 \times 2 = 4$ rules, so that incorporating all current levels into $g(x, u) = g(x, u)$ yields $10 \times 2 \times 2 = 40$ rules. The complexity of $g(x, u)$ can also be reduced by decreasing the number of current levels, i, which are incorporated into this part of the model. The maximum number of rules of the complete model comprising f and g yields $180 + 40 = 220$.

The above described model, i.e., the dynamic model part (6) and the static model part (7), yields the structure of the continuous-time recurrent fuzzy system shown in Fig. 9. The derivative \dot{J} of the current density is computed from the measured data by $\dot{J}(s) = s/(Ts + 1)\dot{J}(s)$, with a small time constant $T = 0.01\text{h}$, such that \dot{J} takes on only finite values.

In a further step, core positions and core position derivatives have to be assigned to the linguistic values and linguistic derivatives, so that a quantitative model is derived from the above described qualitative model.

5. Quantitative Modeling: Dynamic Model Part

The membership functions, i.e., the core positions and core position derivatives, for the dynamic model part (6) are determined in the following subsections. In a first step, this is done by a hierarchical estimation of the parameter values from the analysis of the measured data without applying a numerical method. This is possible due to the transparency, i.e., interpretability, of the recurrent fuzzy system. In a second step, the parameters are estimated using an evolutionary strategy, but this leads only to a small improvement of the simulation results.

5.1. Estimation of core positions

We start off by estimating the core positions s_i^J with $i \in \{0, \ldots, 9\}$, i.e., numerical values that are assigned to the linguistic values L_i^J of the current density, J. They are estimated from the current levels $i \in \{0, \ldots, 9\}$ of the measured data shown in Fig. 3, which leads to the core positions s_i^J shown in Table 4.

Next, the core positions $s_l^{U_{d1}}$ and $s_l^{U_{d2}}$ with $l \in \{1, 2, 3\}$, which correspond to the linguistic values $L_l^{U_{d1}}$ and $L_l^{U_{d2}}$, i.e., “negative”, “zero”, and “positive”, are estimated. By investigating the measured data, it is observable that the dynamic voltage loss ranges between -0.02V and $+0.02\text{V}$, so that the core positions $s_l^{U_{d1}}$ and $s_l^{U_{d2}}$ are chosen accordingly.

Furthermore, the change \dot{J} in current density is determined to be between $-2\text{A/cm}^2\text{min}$ and $+2\text{A/cm}^2\text{min}$, so that the core positions s_k^J with $k \in \{1, 2, 3\}$ correspond to the linguistic values L_k^J, i.e., “negative”, “zero”, and “positive”, of the change \dot{J} in current density, are estimated accordingly. The core positions are summarized in Table 5.

5.2. Elucidation of core position derivatives

In the following, we explain how the core position derivatives $s_{k,l,i}^{U_{d1}}$ and $s_{k,l,i}^{U_{d2}}$ that correspond to the linguistic values $L_{k,l,i}^{U_{d1}}$ and $L_{k,l,i}^{U_{d2}}$ influence the dynamic behavior of U_{d1} and U_{d2}. This can be considered for the determination of their numerical values. Note, the indices k, l, and i indicate to which core position vectors (s_k^J, s_k^J, s_k^J) and (s_k^J, s_k^J, s_k^J) the core position derivatives $s_{k,l,i}^{U_{d1}}$ and $s_{k,l,i}^{U_{d2}}$, respectively, belong.

The core position derivatives $s_{2,3,i}^{U_{d1}}$ and $s_{2,3,i}^{U_{d2}}$ correspond to the decay rate of a positive or negative dynamic voltage loss U_{d1} if $J = 0$. The core position derivatives $s_{1,2,i}^{U_{d1}}$ and $s_{1,2,i}^{U_{d2}}$ correspond to the peak height of the dynamic voltage loss U_{d1} when a step in the current density occurs, i.e., $J > 0$ or $J < 0$ while $U_{d1} = 0$. This applies also to the core position derivatives $s_{2,3,i}^{U_{d2}}$, $s_{2,1,i}^{U_{d1}}, s_{3,2,i}^{U_{d1}}$, and $s_{1,2,i}^{U_{d2}}$, of the voltage loss U_{d2}.

The remaining core position derivatives $s_{2,1,i}^{U_{d1}}$ and $s_{2,1,i}^{U_{d2}}$, belonging to the core position vectors where not either $J = 0$ or $U_{d1} = U_{d2} = 0$, combine the decay rates with the peak heights of the voltage losses U_{d1} and U_{d2}. To reduce the number of parameters, which have to be determined, this combination is achieved by

\begin{align*}
 s_{k,l,i}^{U_{d1}} &= s_{k,2,i}^{U_{d1}} + s_{k,1,i}^{U_{d1}}, \\
 s_{k,l,i}^{U_{d2}} &= s_{k,2,i}^{U_{d2}} + s_{k,1,i}^{U_{d2}},
\end{align*}

with $k, l \in \{1, 3\}$, $i \in \{0, \ldots, 9\}$.

<table>
<thead>
<tr>
<th>$s_l^{U_{d1}}$</th>
<th>$s_l^{U_{d2}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_l^{U_{d1}}$</td>
<td>$s_l^{U_{d2}}$</td>
</tr>
</tbody>
</table>

This leads to the core position derivatives $s_{k,l,i}^{U_{d1}}$ of U_{d1} shown in Table 6 for the ith current level. The core position derivatives $s_{k,l,i}^{U_{d2}}$ of U_{d2} are analogously defined, i.e., replacing U_{d1} and U_{d1} by U_{d2} and U_{d2}, respectively, in Ta-
Table 6
The core position derivatives \(s_{1,1,i} \), which belong to the
core position vectors \((s_{1,1}, s_{1,2}, s_{1,3}, s_{1,4}, s_{1,5}) \).
The core position derivatives describe the change \(U_{d1} \) of the dynamic voltage loss \(U_{d1} \) depending
on the change in current density \(J \), the current density \(J \), and the
dynamic voltage loss \(U_{d2} \).

\[
\begin{array}{c|ccc}
U_{d1} & U_{d1} & U_{d1} & U_{d1} \\
\hline
s_{1,1,i} & s_{1,2,i} & s_{1,3,i} & s_{1,4,i} \\
\end{array}
\]

Table 7
Heuristically estimated core position derivatives \(s_{1,1,i}, s_{1,2,i}, s_{1,3,i}, s_{1,4,i}, \text{ and } s_{1,5,i} \),
for the current level with \(i \in \{0, 3, \ldots, 9\} \) of the current
density \(J \). For \(i \in \{1, 2\} \) the dynamics are small, so that it is not
necessary to model these current levels.

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_{1,1,i})</td>
<td>0.0000</td>
<td>-0.1300</td>
<td>-0.1300</td>
<td>-0.1300</td>
<td>-0.1300</td>
<td>-0.1400</td>
<td>-0.1400</td>
<td>-0.1400</td>
</tr>
<tr>
<td>(s_{1,2,i})</td>
<td>0.0000</td>
<td>0.0400</td>
<td>0.1500</td>
<td>0.1500</td>
<td>0.1500</td>
<td>0.1500</td>
<td>0.1500</td>
<td>0.1500</td>
</tr>
</tbody>
</table>

5.3. Estimation of the core position derivatives

In the following, numerical values are estimated heuristically
for all core position derivatives \(s_{1,1,i} \) and \(s_{1,2,i} \).
The core position derivatives \(s_{2,1,i}, s_{2,2,i}, s_{2,3,i}, s_{2,4,i}, \text{ and } s_{2,5,i} \),
which correspond to the decay rates of \(U_{d1} \) and \(U_{d2} \), are estimated
by observing the measured data where \(J = 0 \). This leads
to the core position derivatives

\[
\begin{align*}
U_{d1} & = 0.0050 \frac{V}{h}, \quad U_{d2} = -0.0080 \frac{V}{h}, \\
U_{d1} & = 0.2000 \frac{V}{h}, \quad U_{d2} = -0.2000 \frac{V}{h},
\end{align*}
\]

where \(i \in \{0, \ldots, 9\} \), that yield good simulation results.

The core position derivatives \(s_{1,1,i}, s_{1,2,i}, s_{1,3,i}, s_{1,4,i}, \text{ and } s_{1,5,i} \),
which model the peak height of \(U_{d1} \) and \(U_{d2} \) for a step in
the current density \(J \), are estimated using the measured
data where \(J > 0 \) or \(J < 0 \) while \(U_{d1} \approx 0 \) and \(U_{d2} \approx 0 \).
This yields the heuristically estimated values for the core
position derivatives on the current levels \(i \in \{0, 3, \ldots, 9\} \)
shown in Table 7.

Table 8

6. Quantitative Modeling: Static Model Part

The summation of the dynamic voltage losses, \(U_{d1} \) and
\(U_{d2} \), with the static voltage loss, \(U_{s} \), leads to the overall
gain \(V_{U} = U_{d1} + U_{d2} + U_{s} \). This is considered when
estimating the core positions \(s_{1,1,i}, s_{1,2,i}, \text{ and } s_{1,3,i} \),
with the membership functions, that correspond to the linguistic
values \(L_{1,1,i}, L_{1,2,i}, \text{ and } L_{1,3,i} \) of the static
model part (7). To reduce the number of parameters, which have
to be estimated, the core positions \(s_{1,1,i} \) corresponding to the
linguistic values \(L_{1,1,i} \) of \(U_{1} \) are estimated according to

\[
s_{1,1,i} = s_{1,1} + s_{1,2} + U_{s}(i)
\]

with \(l, j \in \{1, 2\} \) and \(i \in \{0, \ldots, 9\} \). \(U_{s}(i) \) corresponds to the
static voltage loss that occurs on the \(l \)th current level
and is read off from the measured data in Fig. 4. \(s_{1,1} \) and
\(s_{1,2} \) are the core positions of \(U_{d1} \) and \(U_{d2} \), respectively.
Using (11) for all core positions \(s_{1,1,i} \) leads to a rule base
that corresponds to \(V_{U} = U_{d1} + U_{d2} + U_{s} \). The resulting
rule base is shown in Table 8.

Note, only the values \(U_{s}(i) \) have to be estimated for each
level \(i \in \{0, \ldots, 9\} \). They are given in Table 9. The
values for \(s_{1,1} \) and \(s_{1,2} \) are the same as in the dynamic
model part, which are given in Table 5. Using Tables 5 and
9 the numerical values in Table 8 are calculated.
Table 8
The table shows the rule base that describe the overall voltage loss, \(U_V \), depending on the current density, \(J \), the static voltage loss, \(U_s \), and the dynamic voltage losses, \(U_{d1} \), \(U_{d2} \), \(U_{d3} \), \(U_{d4} \), \(U_{d5} \).

\[
\begin{array}{c|cccc}
\text{rule} & U_s & U_{d1} & U_{d2} & U_{d3} \\
\hline
\text{rule} & 4 & 5 & 6 & 7 \\
\text{rule} & 8 & 9 & 10 & 11 \\
\end{array}
\]

Table 9
Static voltage \(U_s(i) \) for the \(i \)th current level with \(i \in \{0, \ldots, 9\} \).

\[
\begin{array}{c|cccccccccc}
\text{level} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\text{voltage} & 0.0560 & 0.0890 & 0.1174 & 0.1412 & 0.1634 & 0.1849 & 0.2067 & 0.2289 & 0.2510 & 0.2721 \\
\end{array}
\]

Instead of heuristically estimating the parameters of the dynamic and static model part, they can also be identified numerically. Therefore, the parameters of the model, which are numerically optimized, are combined into a parameter vector

\[
p = [p_0, \ldots, p_{9}, U_s(1), \ldots, U_s(9)]^T, \quad \text{where} \quad p_i = \begin{bmatrix} x_{i,1,1}, x_{i,2,1}, x_{i,3,2}, x_{i,4,2}, x_{i,5,2}, x_{i,6,2}, x_{i,7,2}, x_{i,8,2}, x_{i,9,2} \end{bmatrix}
\]

for all \(i \in \{0, \ldots, 9\} \). Note, only the parameters that are actually incorporated into the model are combined into the parameter vector, e.g., if the current levels \(i \in \{0, 3, \ldots, 9\} \) are incorporated into the dynamic model part, only \(p_i \) with \(i \in \{0, 3, \ldots, 9\} \) are considered. By minimizing the quadratic cost function

\[
F(p, t) = \int_0^t (U_{V,\text{measured}}(\tau) - U_{V,\text{model}}(\tau, p))^2 d\tau
\]

using an evolutionary strategy, a parameter set that further enhances the model accuracy can numerically be determined.

7. Time-Invariant Model: Simulation Results

Due to the interpolating character of the fuzzy system, it is not necessary to incorporate all core positions \(s_i \) with \(i \in \{0, \ldots, 9\} \) into the model to obtain accurate simulation results. In the following, we consider several model configurations, which differ in the number of core positions that are used in the dynamic model part. In each model configuration, the static model part comprises all current levels \(i \in \{0, \ldots, 9\} \), since the complexity of the static model part is low. The model incorporating the current levels \(i \in \{0, 3, \ldots, 9\} \) in the dynamic model part is denoted 03-9-model.

Analogously, we introduce a 09-model and a 069-model, which incorporate the current levels \(i \in \{0, 9\} \) and \(i \in \{0, 6, 9\} \), respectively. These models are less complex than the 03-9-model, and in return, some accuracy is lost. Either the parameters determined in Section 4 can be used for all three model configurations or numerically identified parameters can be determined using (13).

The results, obtained by the 03-9-model with the heuristically determined model parameters from Section 4 are shown in Fig. 12, 13. The difference between measurement and simulation mainly results mainly from the measurement noise. Fig. 14 shows a zoomed plot of the simulated dynamic voltage losses \(U_{d1}, U_{d2} \), and the overall dynamic voltage loss \(U_d \) in comparison to the measured dynamic voltage loss from Fig. 8. Note, these plots show that this model yields accurate estimations of the voltage loss \(U_V \), such that there exists almost no difference between the measurement and the simulation. Thus, the presented qualitative and quantitative model is appropriate.

Fig. 15 shows the root mean square of the relative model error, \(RMS(p, t) \), of the models with heuristically estimated parameters compared to the 03-9-model with numerically identified parameters. As one expects, the more core positions, i.e., the more rules, are incorporated into the model, the more accurate is the simulation result. Note,
the 03-9-model with heuristically chosen parameters is almost as accurate as the 03-9-model with numerical identified parameters. This is possible due to the transparency of the model, which allows the accurate estimation of the parameters.

In Table 10 the values of $RMS(p,t)$ for $t = 250h$ are shown for the heuristically, p_{heu}, and numerically, p_{num}, determined model parameters. The 03-9-model with the numerically determined parameters achieves the highest accuracy, since it incorporates more current levels i than the 069-model and the 09-model. A model which includes all current levels 0-9 is not shown in the table. It leads only to a very slight improvement of the simulation results in comparison to the 03-9-model, since there are only very small dynamics on the current levels 1-2. Thus, they can be interpolated between the very small dynamics on the current levels zero and three. Incorporating the current levels 1-2 only increases the number of rules, which is disadvantageous. However, all model configurations yield accurate simulation results.

In Haschka et al. (2006) a switching Hammerstein-model with an additive nonlinearity was proposed to model the voltage loss during operation of a SOFC. The simulation results of the proposed time-invariant model and the model in Haschka et al. (2006) are both similar accurate.

Unfortunately, a numerical comparison is not feasible, since no numerical error measures are given in Haschka et al. (2006). However, the model, using continuous-time recurrent fuzzy systems, is transparent, i.e., interpretable, whereas the switching Hammerstein-model is not.

The model above does not consider the deterioration of a SOFC described in Section 2.2, so that the simulation for a long time period leads to the results shown in Fig. 16. Obviously, the incorporation of the fuel cell deterioration into the model is required to achieve accurate results for the long time simulation.

8. Modeling the Deterioration of the SOFC

The incorporation of the degradation effects into the model is achieved by introducing the additional linguistic state “age”, A, into the above introduced nonlinear time-invariant model, which represents the grade of degradation.

The dynamic voltage loss caused by the structural effect, i.e., a positive or negative value of U_{d1}, highly influences the degradation, i.e., the linguistic state A. Furthermore, the current density also influences the degradation process, i.e., a medium value of the current density, J, has a higher influence on the degradation process than a large or a zero current density, so that the current density is also incorporated. The rule base that describes \dot{A} depending on A, J, and U_{d1} is summarized in Table 11.

In this rule base, the two linguistic values

$L_1^A = "young"$, $L_2^A = "old"$,
describing the state \(A \), are introduced. The two linguistic values represent “no deterioration” and “complete deterioration”, respectively. Depending on the current density, \(J \), and the voltage loss \(U_{d1} \), the value of \(A \) increases with different rates or is constant. Thus, we introduce the linguistic values

\[
L_1^A = \text{“zero”}, \quad L_2^A = \text{“very small”}, \quad L_3^A = \text{“small”}, \quad L_4^A = \text{“medium”}, \quad L_5^A = \text{“large”}
\]

that describe the derivative \(\dot{A} \) of the linguistic state \(A \). The current density, \(J \), and the voltage loss \(U_{d1} \) are described by the linguistic values

\[
\tilde{L}_1^J = \text{“zero”}, \quad \tilde{L}_2^J = \text{“medium”}, \quad \tilde{L}_3^J = \text{“large”}, \quad \tilde{L}_4^U = \text{“negative”}, \quad \tilde{L}_5^U = \text{“positive”},
\]

respectively. The dynamic model for \(A \) is represented by

\[
\dot{A} = f_{\text{Age}}(A, U_{d1}, J).
\]

The age, \(A \), of the fuel cell influences both the static and dynamic voltage losses that occur during operation. In fact, the linguistic variable \(A \) must be integrated into the time-invariant model (6), (7), which requires additional linguistic rules.

Since \(A \) takes on the two values \(L_1^A = \text{“young”} \) and \(L_2^A = \text{“old”} \), this is achieved by simply using the rule base of the time-invariant model for both \(L_1^A = \text{“young”} \) and \(L_2^A = \text{“old”} \) but with different parameters, i.e., with different core positions. The rules of the dynamic model part incorporating \(A \) have the following form:

If \(A = L_1^A \) and \(J = L_i^J \) and \(\dot{J} = L_k^\dot{J} \)

and \(U_{d1} = L_s^{U_{d1}} \), then \(U_{d1} = L_s^{U_{d1}}.\)

The rules of the static model part have the form

If \(A = L_1^A \) and \(J = L_i^J \) and \(U_{d1} = L_i^{U_{d1}} \)

and \(U_{d2} = L_j^{U_{d2}} \), then \(U_V = L_i^{U_V}.\)

These rules lead to

\[
\begin{align*}
[\dot{U}_{d1}, \dot{U}_{d2}, \dot{A}]^T &= f_{\text{Age}}(U_{d1}, U_{d2}, A, J, J), \\
U_V &= g_A(U_{d1}, U_{d2}, A, J).
\end{align*}
\]

Combining (14), (15), (16) yields the continuous-time recurrent fuzzy system

\[
[\dot{U}_{d1}, \dot{U}_{d2}, \dot{A}]^T = f_{\text{Age}}(U_{d1}, U_{d2}, A, J, J),
\]

\[
U_V = g_A(U_{d1}, U_{d2}, A, J).
\]

Note, since the nonlinear time-invariant model has been incorporated into the time-variant model, the time-variant model is also nonlinear. The nonlinearity results from the nonlinear dependence between the dynamic voltage losses and the current density. The model structure is shown in Fig. 17, where \(T = 0.01h \).

The core positions \(s_a^{U_{d1}}, s_a^{U_{d2}}, s_j^J, \) and \(s_i^{U_{d1}} \) are chosen to be the same as in the time-invariant case. The core positions \(s_a^A, s_i^J, \) and \(s_i^{U_{d1}} \) are chosen heuristically. The age is measured in \%, since the deterioration of the fuel cell depends not only on the operation time, but also on the operation mode. The current density and a change in the current density result in a deterioration of the fuel cell, which cannot be measured in time. It is only possible to say that there is no deterioration (0\%) or the deterioration increases until the fuel cell is completely deteriorated (100\%). Thus, the core positions \(s_a^A \) are chosen to be \(s_i^J = 0\% \) and \(s_i^{U_{d1}} = 100\% \) to represent the linguistic values “young” and “old”, i.e. “no deterioration” or complete deterioration of the fuel cell, respectively. The remaining core positions and core position derivatives in the time-variant model are determined by applying a numerical optimization method. Therefore, they are combined into a parameter vector, \(p_A \). Minimizing the cost function (13) with respect to the parameter vector \(p_A \) by using an evolutionary strategy yields the core positions and the core position derivatives. The values are given in the appendix.

9. Time-Variant Model: Simulation Results

In the following, the simulation results, which are achieved using the time-variant model incorporating the deterioration of the fuel cell, are presented. The results for a 03-9-model, where the dynamic model part incorporates the current levels \(s_i^J \) with \(i \in \{0, 3, \ldots, 9\} \) and the static model part employs all current levels \(s_i^J \) with \(i \in \{0, \ldots, 9\} \), are shown.
Fig. 18 (a) Voltage loss U_V, simulated with the time-variant model (3) and with the time-invariant model (2) compared to the data (1). Note, the time-variant model yields an accurate estimation of the voltage loss U_V, such that there is no difference observable to the measured data. (b) Zoom of U_V simulated with the time-variant model (3) compared to the measured data (1). (c) The deterioration, i.e., the age A, of the fuel cell model is shown.

Fig. 18 (a) shows the estimation of the voltage loss U_V using the time-variant model in comparison to the time-invariant model and the measured data. In contrast to the time-invariant model, which allows accurate simulations over a period of approximately 80 hours, the simulation using the time-variant model accurately estimates the voltage loss over a period of approximately 320 hours. During this period, the simulation results are almost identical with the measured data. A zoom of the plot presented in Fig. 18 (b) shows the accuracy of the simulated voltage loss U_V using the time-variant model. The root mean square of the relative model error yields at time $t = 492$ h a value of $RMS(\text{pnum}) = 0.75\%$. Furthermore, the time-variant model allows assessing the grade of deterioration of the fuel cell, which can be observed in Fig. 18 (c).

In contrast to our proposed time-variant model, where we modify the characteristics of U_{d1}, U_{d2}, and U_s to incorporate the deterioration of the fuel cell, the time-variant model in Haschka et al. (2006) modifies only the characteristics of U_s. Thus, the simulation results are similar accurate considering the static voltage loss, but they differ considering the dynamic voltage loss. The measured data shows that the dynamic voltage loss depends on the deterioration. Thus, if a higher accuracy is necessary for the dynamic voltage losses, the proposed model is beneficial.

10. Conclusions

This work presents an approach to model the dynamic current density/voltage loss characteristics of a SOFC using continuous-time recurrent fuzzy systems. A time-invariant and a time-variant model have been developed, which allow accurate simulations. The advantage of the proposed models in comparison to models that are found in literature are their transparency and interpretability. Thus, comprehensible and accurate models are proposed for the dynamic simulation of the current density/voltage loss characteristics of a SOFC. The model is also applicable to other types of fuel cells by modifying the model parameters, since the effects that cause static and dynamic voltage losses, occur also in other types of fuel cells.

11. Acknowledgment

The authors thank V. Krebs, University of Karlsruhe, Germany, who supported this work. We also thank T. Lens and E. Lenz for their support concerning the simulation and optimization parts.

12. Appendix

The parameters that are used to determine the core positions and core position derivatives of the model incorporating the deterioration of the fuel cell, are given in Tables 12, 13, and 14. The values for the core positions $s_i^{U_{d1}}$, $s_i^{U_{d2}}$, s_i^U, and s_i^J of U_{d1}, U_{d2}, J, and J, respectively, which are used in the time-variant model are the same as for the time-invariant model given in Tables 4, 5.
Table 14
Core position derivatives for the dynamic voltage losses U_{d1} and U_{d2}.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{d1}</td>
<td>0.0000</td>
<td>-0.9957</td>
<td>-0.1288</td>
<td>-0.1594</td>
<td>-0.1160</td>
<td>-0.1846</td>
<td>-0.1817</td>
<td>-0.0987</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{d2}</td>
<td>0.0000</td>
<td>0.1090</td>
<td>0.2883</td>
<td>0.1930</td>
<td>0.2080</td>
<td>0.1717</td>
<td>0.1646</td>
<td>0.0912</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{d1}, f_c</td>
<td>0.0053</td>
<td>0.0021</td>
<td>0.0020</td>
<td>0.0014</td>
<td>0.0008</td>
<td>0.0034</td>
<td>0.0047</td>
<td>0.0053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{d2}, f_c</td>
<td>-0.0112</td>
<td>-0.0008</td>
<td>-0.0058</td>
<td>-0.0064</td>
<td>-0.0048</td>
<td>-0.0059</td>
<td>-0.0055</td>
<td>-0.0098</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

